

ISOMETER® isoES425

Insulation monitoring device for unearthed AC-, AC/DC and DC systems for energy storage devices up to AC/DC 400 V Software version: D0471 V1.xx

Table of contents

4	Operation	10
3.4	Commissioning	1
3.3	Connection	16
3.2	Installation	1
3.1	Dimensions	
3	Installation, connection and commissioning	1
2.3.12	Digital interface	1
2.3.11	History memory HiS	1
2.3.10	Fault memory	1
2.3.9	External test/reset button (T/R)	
2.3.8	Password protection (on, OFF)	1
2.3.7	Measuring and response times	
2.3.6	Alarm assignment of the alarm relays K1/K2	
2.3.5	Malfunction	
2.3.4	Connection monitoring	
2.3.3	Self test/error codes	
2.3.2	Undervoltage/overvoltage monitoring	10
2.3.1	Monitoring the insulation resistance	
2.3	Functional description	
2.2	Device features	
2.1	Intended use	
2	Function	
1.10	Safety	
1.9	Disposal of Bender devices	
1.8	Warranty and liability	
1.7	Inspection, transport and storage	
1.6	Delivery conditions	
1.5	Training courses and seminars	
1.4	Service and Support	
1.3	Signs and symbols	
1.2	Indication of important instructions and information	
1.1	How to use the manual	
1	General information	••••••••••

4.1	Operating and display elements	18
4.2	Menu overview	20
4.3	Displaying measured values	21
4.4	Setting the response values (AL)	21
4.4.1	Setting the response values for monitoring the insulation resistance	21
4.4.2	Setting the response values for undervoltage and overvoltage	22
4.4.3	Response values overview	22
4.5	Configuring fault memory, alarm relays, and interfaces (out)	23
4.5.1	Configuring the relays	23
4.5.2	Assigning the alarm messages to the relays	23
4.5.3	Activating or deactivating fault memory	24
4.5.4	Configuring interface	24
4.6	Setting delay times and self test cycles (t)	24
4.7	Setting device control parameters (SEt)	25
4.8	Reset to factory settings	25
4.9	Showing and deleting the history memory	25
4.10	Querying software version (InF)	25
5	Data access via RS-485 interface	26
5.1	Data access using the BMS protocol	26
5.2	IsoData data string	27
6	Technical data	28
6.1	Technical data isoES425	28
6.2	Connection	32
6.3	Standards and certifications	32
6.4	Ordering data	33
6.5	Change log	33

1 General information

1.1 How to use the manual

ADVICE

This manual is intended for qualified personnel working in electrical engineering and electronics! Part of the device documentation in addition to this manual is the enclosed supplement 'Safety instructions for Bender products'.

ADVICE

Read the operating manual before mounting, connecting and commissioning the device. Keep the manual within easy reach for future reference.

1.2 Indication of important instructions and information

DANGER

Indicates a high risk of danger that will result in death or serious injury if not avoided.

WARNING

Indicates a medium risk of danger that can lead to death or serious injury if not avoided.

CAUTION

Indicates a low-level risk that can result in minor or moderate injury or damage to property if not avoided.

ADVICE

Indicates important facts that do not result in immediate injuries. They can lead to malfunctions if the device is handled incorrectly.

Information can help to optimise the use of the product.

1.3 Signs and symbols

1.4 Service and Support

Information and contact details about customer service, repair service or field service for Bender devices are available on the following website: Fast assistance | Bender GmbH & Co. KG.

1.5 Training courses and seminars

Regular face-to-face or online seminars for customers and other interested parties:

www.bender.de > know-how > seminars.

1.6 Delivery conditions

The conditions of sale and delivery set out by Bender GmbH & Co. KG apply. These can be obtained in printed or electronic format.

The following applies to software products:

'Software clause in respect of the licensing of standard software as part of deliveries, modifications and changes to general delivery conditions for products and services in the electrical industry'

1.7 Inspection, transport and storage

Check the shipping and device packaging for transport damage and scope of delivery. In the event of complaints, the company must be notified immediately, see 'www.bender.de > service & support.'.

The following must be observed when storing the devices:

1.8 Warranty and liability

Warranty and liability claims for personal injury and property damage are excluded in the case of:

- · Improper use of the device.
- Incorrect mounting, commissioning, operation and maintenance of the device.
- Failure to observe the instructions in this operating manual regarding transport, commissioning, operation and maintenance of the device.
- Unauthorised changes to the device made by parties other than the manufacturer.
- · Non-observance of technical data.
- Repairs carried out incorrectly.
- The use of accessories or spare parts that are not provided, approved or recommended by the manufacturer.
- Catastrophes caused by external influences and force majeure.
- Mounting and installation with device combinations not approved or recommended by the manufacturer.

This operating manual and the enclosed safety instructions must be observed by all persons working with the device. Furthermore, the rules and regulations that apply for accident prevention at the place of use must be observed.

1.9 Disposal of Bender devices

Abide by the national regulations and laws governing the disposal of this device.

For more information on the disposal of Bender devices, refer to www.bender.de > service & support.

1.10 Safety

If the device is used outside the Federal Republic of Germany, the applicable local standards and regulations must be complied with. In Europe, the European standard EN 50110 applies.

DANGER Risk of fatal injury due to electric shock!

Touching live parts of the system carries the risk of:

- · Risk of electrocution due to electric shock
- Damage to the electrical installation
- · Destruction of the device

Before installing the device and before working on its connections, make sure that the installation has been de-energised. The rules for working on electrical systems must be observed.

2 Function

2.1 Intended use

The ISOMETER* isoES425 monitors the insulation resistance R_F of unearthed AC, AC/DC and DC systems (IT systems) for energy storage devices up to AC/DC 400 V.

DC components existing in AC systems do not influence the operating characteristics when a minimum load current of DC 10 mA flows. A separate supply voltage U_s allows de-energised systems to be monitored as well.

By using the isoES425 in network operation, the connection to earth is monitored for interruptions, which are displayed as faults. When operated as an island network, the isoES425 takes over the monitoring of the island network (IT system).

In order to meet the requirements of the applicable standards, customised parameter settings must be made on the equipment in order to adapt it to local equipment and operating conditions. Please heed the limits of the range of application indicated in the technical data.

Any other use or a use that goes beyond this constitutes improper use.

- To ensure that the ISOMETER® functions correctly, an internal resistance of $\leq 1 \text{ k}\Omega$ must exist between L1/+ and L2/- via the source (e.g. PSU) or the load.
- If the ISOMETER® is installed inside a control cabinet, the insulation fault message must be audible and/or visible to attract attention.

2.2 Device features

- Monitoring of the insulation resistance R_F for unearthed AC/DC systems
- Measuring the system voltage U_n (True-RMS) with undervoltage/overvoltage detection
- Measuring the DC residual voltages $U_{1.1e}$ (L1/+ to PE) and $U_{1.2e}$ (L2/- to PE)
- · Selectable start-up delay, response delay and delay on release
- Alarm output via LEDs ("AL1", "AL2"), display, and alarm relays ("K1", "K2")
- · Automatic device self test with connection monitoring
- Selectable n/c or n/o relay operation
- Measured value indication via multi-functional LC display
- · Activatable fault memory
- Automatic adjustment to the system leakage capacitance C_e up to 100 μF
- Two separately adjustable response value ranges 1...990 kΩ (prewarning, alarm)
- RS-485 (galvanically isolated) including the following protocols:
 - BMS (Bender measuring device interface) for the data exchange with other Bender devices
 - IsoData (for continuous data output)
- · Password protection against unauthorised changing of parameters

2.3 Functional description

The ISOMETER* measures the insulation resistance $R_{\rm F}$ and the system leakage capacitance $C_{\rm e}$ between the system to be monitored (L1/+, L2/–) and earth (PE). The RMS value of the system voltage $U_{\rm n}$ between L1/+ and L2/– as well as the residual voltages $U_{\rm L1e}$ (between L1/+ and earth) and $U_{\rm L2e}$ (between L2/– and earth) are also measured.

From a minimum system voltage in the DC system, the ISOMETER® determines the faulty conductor "R %", which shows the distribution of the insulation resistance between conductors L1/+ and L2/-. The distribution is indicated by a positive or negative sign preceding the insulation resistance measurement. The value range of the faulty conductor is ± 100 %:

Indication Meaning

- -100 % one-sided fault at conductor L2/-
 - 0 % symmetrical fault
- +100 % one-sided fault at conductor L1/+

The partial resistances can be calculated from the total insulation resistance R_F and the faulty conductor "R %" using the following formula:

- Fault at conductor L1/+: $R_{L1F} = (200 \% \times R_F) / (100 \% + R \%)$
- Fault at conductor L2/-: $R_{L2F} = (200 \% \times R_F) / (100 \% R \%)$

In the AC system, the location of the fault in the DC link is indicated by a positive or negative sign preceding the insulation resistance measured value in the AC system from a minimum nominal system voltage between the AC system and earth, caused by a fault in a connected DC circuit. A percentage distribution to the location of the fault is not possible. The faulty conductor "R %" is only represented as a one-sided fault on L1/+ (+100 %) or L2/- (-100 %).

Also from a minimum voltage, the ISOMETER® determines the insulation resistance $R_{\rm UGe}$ from the residual voltages $U_{\rm L1e}$ and $U_{\rm L2e}$. It is an approximate value for one-sided insulation faults and can be used as a trend indicator in cases where the ISOMETER® has to adapt to an $R_{\rm F}$ and $C_{\rm e}$ relation that varies considerably.

The detected fault is assignable to an alarm relay via the menu. If the values R_F or U_n violate the response values activated in the "AL" menu, this will be indicated by the LEDs and relays "K1" and "K2" according to the signalling assignment set in the "out" menu. In addition, the menu offers the setting of the relay operation and the activation of the fault memory "M".

If the values R_F or U_n do not violate their release value (response value plus hysteresis) for the period $t_{\rm off}$ without interruption, the alarm relays will switch back to their initial position and the alarm LEDs stop lighting. If the fault memory is activated, the alarm relays remain in alarm position and the LEDs are lit until the reset key "R" is pressed or the supply voltage U_s is interrupted.

The device function can be checked with the test button "T".

Parameters are assigned to the device via the LCD and the control buttons on the front panel; this function can be password-protected. Parameterisation is also possible via the BMS bus.

2.3.1 Monitoring the insulation resistance

The insulation resistance R_F is monitored by means of the parameters "R1" (prewarning) and "R2" (alarm) (see chapter 4.4.3). The value "R1" can only be set higher than the value "R2". If the insulation resistance R_F reaches or falls below the activated values "R1" or "R2", an alarm message is triggered. If R_F exceeds the values "R1" or "R2" plus the hysteresis value, the alarm will be cleared.

2.3.2 Undervoltage/overvoltage monitoring

To monitor the system voltage U_n , the two parameters "U<" and "U>" can be enabled in the response-value menu "AL" (see chapter 4.4). The maximum undervoltage value is limited by the overvoltage value.

The RMS value of the system voltage U_n is monitored. If the system voltage U_n reaches, falls below, or exceeds the limit values "U<" and "U>", an alarm will be signalled. If the maximum permissible system voltage U_n set for the ISOMETER® is exceeded, an alarm message will be triggered even if the overvoltage limit value has been deactivated. The alarm will be deleted when the limit values plus hysteresis (see chapter 4.4.1) are no longer violated.

2.3.3 Self test/error codes

The **self test** checks the function of the ISOMETER®, and monitors the connection to earth as well as the connection to the system to be monitored. The alarm relays do not switch during an automatically started self test. For a self test started manually, the switching of the alarm relays can be set using the parameter "test" in the alarm assignment (menu "out", chapter 4.5.2). During the test, the display indicates "tES".

When malfunctions are detected or connections are missing, the LEDs "ON"/"AL1"/"AL2" flash. The display shows the respective error codes ("E.xx"), and in the factory setting relay "K2" switches. The relays can be assigned to a device error with the parameter "Err" in the "out" menu in the alarm assignment.

2.3.3.1 Error codes

In the event of a device error the display shows the respective **error code**.

Overview of some error codes

Error code	Meaning
E.01	PE connection error The connection of "E" or "KE" to earth is interrupted. Action: Check connection, eliminate error. The error code will be erased automatically once the error has been eliminated.
E.02	System connection error The internal resistance of the system is too high or the connection of "L1/+" or "L2/-" to the system is interrupted. The terminals "L1/+" and "L2/-" are connected incorrectly. Action: Check connection, eliminate error. The error code will be erased automatically once the error has been eliminated.
E.05	Measurement error Due to system interferences or a device error, the insulation measured value is no longer updated. Prewarning and alarm are set for the insulation measured value at the same time. Calibration invalid after software update "E.05" appears together with "E.08": The software is not compatible to the calibration of the device. Action: Install the previous software version or have the device calibrated at the factory.
E.07	Permissible system leakage capacitance $C_{\rm e}$ exceeded The device is not suitable for the present network leakage capacitance $C_{\rm e}$. Action: Uninstall the device.
E.08	Calibration error Action: Check connection, eliminate error. If the error is still present, there is a device error.

Internal device errors "E.xx" can be caused by external disturbances or internal hardware errors. If the error message occurs again after the device has been restarted or after a reset to the factory settings (menu item "FAC"), the device must be repaired. After the fault has been eliminated, the alarm relays switch back either automatically or when the reset button is pressed. The self test can take a few minutes.

2.3.3.2 Automatic self test

In the factory setting a self test is carried out when the supply voltage U_s is connected and after that every 24 h. This cycle can be adjusted: off, 1 h, 24 h (see chapter 4.6).

The self test can be disabled for the device start so that the device can enter the measurement mode more quickly. To this end, set the parameter "S.Ct = off" in the menu "SEt".

2.3.3.3 Manual self test

The manual self test is started by pressing the external test/reset button or the test button "T" on the device for > 1.5 s. Holding the test button "T" also shows all display elements.

2.3.4 Connection monitoring

Connection monitoring, activated by the self test, checks the connections of terminals "E" and "KE" to the protective earth conductor (PE). When an error is detected, the message device error ("Err") is signalled and the error code "E.01" appears on the display.

The system connection monitoring checks the connection of terminals "L1/+" and "L2/-" to the system to be monitored. When an interruption or a high-resistance connection between L1/+ and L2/- is detected via the internal resistance of the system, the device error ("Err") is signalled and the error code "E.02" appears on the display. Since a test of the system connection may take considerable time or even provide incorrect resultsdue due to system disturbances, the connection monitoring can be switched off using the parameter "nEt" in the "SEt" menu.

2.3.5 Malfunction

The device checks some of its functions continuously during operation. If a fault is detected, the device error ("Err") is signalled, "E.xx" appears on the display as an identifier for error type xx, and the LEDs "ON"/"AL1"/"AL2" flash.

Please contact Bender Service, if the error occurs again after the device has been restarted or the factory settings have been restored.

2.3.6 Alarm assignment of the alarm relays K1/K2

The notifications for "device error", "insulation fault", "undervoltage/overvoltage fault", "device test" and "device start with alarm" can be assigned to the alarm relays via the "out" menu.

An insulation fault is indicated by these messages:

- "+R1" and "+R2": insulation fault assigned to conductor L1/+
- "-R1" and "-R2": insulation fault assigned to conductor L2/-

If an assignment to a conductor is not possible, e.g. due to a symmetrical insulation fault, the respective "+" and "-" messages are set together.

The message "test" indicates a **device test** triggered manually via a test button or the communication interface.

The message "S.AL" indicates a **device start with alarm**. When the parameter value is set to "S.AL = on" and the supply voltage U_s is connected, the ISOMETER® starts with the insulation measured value $R_F = 0 \Omega$ and and sets all activated alarms. The alarms will be cleared only when the measured values are up-to-date and no thresholds are violated. In the factory setting "S.AL = off", the ISOMETER® starts without an alarm.

Recommendation: Set parameter value "S.AL" identical for both relays.

2.3.7 Measuring and response times

The measuring time is the period essential for the detection of the measured value. The measuring time is reflected in the operating time t_{ae} . For the insulation resistance measured value, it is mainly determined by the necessary measuring pulse duration, which depends on the insulation resistance R_F and the system leakage capacitance C_e of the system to be monitored. The measuring pulse is generated by the measuring pulse generator integrated in the ISOMETER*. The measuring times for C_e , U_{L1e} , U_{L2e} and R % are synchronous.

System disturbances may lead to extended measuring times. In contrast, the time for the system voltage measurement U_n is independent and considerably shorter.

Operating time tae

The operating time t_{ae} is the time required by the ISOMETER® to determine the measured value. The insulation resistance measured value depends on the insulation resistance R_F and the system leakage capacitance C_e .

Response delay ton

The response delay $t_{\rm on}$ is set uniformly for all alarm messages in the "t" menu using the parameter "ton", while each alarm message specified in the alarm assignment has its own timer for $t_{\rm on}$. This delay can be used for interference suppression in the case of short measuring times.

An alarm message will only be signalled when a limit value of the respective measured value is violated for the duration of t_{on} . Each time the limit value is violated within the time t_{on} , the response delay "ton" restarts.

Total response time t_{an}

The total response time t_{an} is the sum of the operating time t_{ae} and the response delay t_{on} .

Delay on release toff

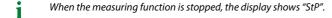
The delay on release t_{off} can be set uniformly for all alarm messages using the parameter "toff", while each alarm message specified in the alarm assignment has its own timer for t_{off} .

An alarm message will be signalled until the limit value of the respective measured value is no longer violated (including hysteresis) for the duration of $t_{\rm off}$ without interruption. Each time a limit value is no longer violated during $t_{\rm off}$, the delay on release "toff" restarts.

Start-up delay t

After connecting the supply voltage U_{S} , the alarm output is suppressed for the time set in parameter "t" (0...10 s).

2.3.8 Password protection (on, OFF)


If password protection is activated (on), settings can only be made after entering the password (0...999). For its activation, see chapter 4.7.

2.3.9 External test/reset button (T/R)

Functions

- Reset = press the external button < 1.5 s
- Reset + self test = press the external button > 1.5 s
- Stop measuring function = press and hold the external button

Stop mode can also be triggered via an interface command, and in this case it can only be reset via the interface.

Only one ISOMETER® may be controlled via an external test/reset button.

A galvanic parallel connection of several test or reset inputs for testing multiple insulation monitoring devices is not allowed.

2.3.10 Fault memory

Disabled (OFF)

The LEDs and relays signal the fault as long as it is detected.

Enabled (ON)

The LEDs and relays signal the fault until a reset is performed or the supply voltage U_s is disconnected.

2.3.11 History memory HiS

The history memory saves exclusively the measured values for the first fault. The history memory must first be cleared before new measured values can be saved.

The values checked in the table in section "Displaying measured values", page 21 can be saved.

2.3.12 Digital interface

The ISOMETER® uses the serial hardware interface RS-485 with the following protocols:

BMS

The BMS protocol is an essential component of the Bender measuring device interface (BMS bus protocol). Data transmission generally makes use of ASCII characters.

IsoData

The ISOMETER® sends an ASCII data string with a cycle of approximately 1 second. Communication with the ISOMETER® in this mode is not possible, and no additional sender may be connected via the RS-485 bus cable. The ASCII data string for the ISOMETER® is described in chapter 5.2.

The IsoData protocol can be terminated by sending the command "Adr3" during a transmission pause of the ISOMETER".

The parameter address, baud rate and parity for the interface protocols are configured in the "out" menu.

With "Adr = 0", the menu entries baud rate and parity are not shown in the menu and the IsoData protocol is activated.

With a valid bus address (i.e. not equal to 0), the menu item "baud rate" is displayed in the menu. The parameter value "---" for the baud rate indicates the activated BMS protocol. In this case, the baud rate for the BMS protocol is set to 9600 baud.

3 Installation, connection and commissioning

3.1 Dimensions

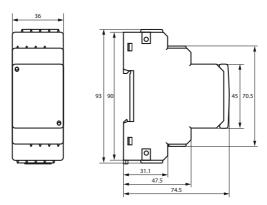


Figure: Dimension diagram (in mm)

3.2 Installation

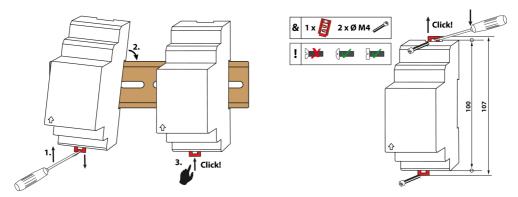


Figure: DIN rail mounting (left) or screw mounting (right)

3.3 Connection

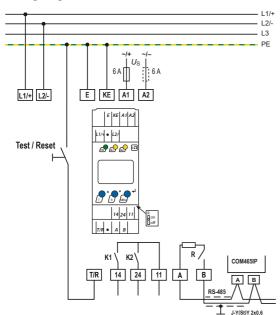
DANGER Risk of fatal injury due to electric shock!

Touching live parts of the system carries the risk of:

- · Risk of electrocution due to electric shock
- Damage to the electrical installation
- · Destruction of the device

Before installing the device and before working on its connections, make sure that the installation has been de-energised. The rules for working on electrical systems must be observed.

i


For UL applications:

Only use 60/75 °C copper lines.

For UL and CSA applications: Connect the supply voltage via 5 A fuses.

For details about the conductor cross sections required for wiring, refer to chapter '6 Technical data'.

Wiring diagram

Terminal	Connections
A1, A2	Connection to the supply voltage $U_{\rm s}$ via fuse (line protection): If supplied from an IT system, protect both lines by a fuse.
E, KE	Connect each terminal separately to PE: Use same wire cross section as for "A1", "A2".
L1/+, L2/-	Connection to the system to be monitored
T/R	Connection for the external combined test and reset button
11, 14	Connection to alarm relay "K1"
11, 24	Connection to alarm relay "K2"
A, B	RS-485 communication interface with connectable terminating resistor Example: Connection of a BMS Ethernet gateway COM465IP

Figure: Wiring diagram

3.4 Commissioning

- 1. Check that the ISOMETER® is properly connected to the system to be monitored.
- 2. Connect supply voltage U_s to the ISOMETER®.

The device carries out a calibration, a self test and adjusts itself to the IT system to be monitored. With high system leakage capacitances this process may take up to 4 min. The standard display then appears showing the present insulation resistance, e.g.:

The pulse symbol \prod signals an error-free update of the resistance and capacitance measured values. If the measured value cannot be updated due to disturbances, the pulse symbol will be blanked.

- 3. **Start a manual self test** by pressing the test button "T" > 1.5 s. While holding the test button all available display elements are shown. After releasing the button, the test starts and "tES" flashes for the duration of the test. Detected malfunctions are displayed as error codes (see chapter 2.3.3.1).
 - The alarm relays are not checked during the test (factory setting). The setting can be changed in the "out" menu so that the relays switch to the alarm state during the manual self test.
- 4. Check if the settings are suitable for the system being monitored.

The list of factory settings is shown in the tables from chapter 4.4.

For networks with a leakage capacitance > 5 μF, the response value R_{an1} should be set to a maximum of 200 kΩ due to the increased measurement tolerance.

5. Check the functionality by a real insulation fault.

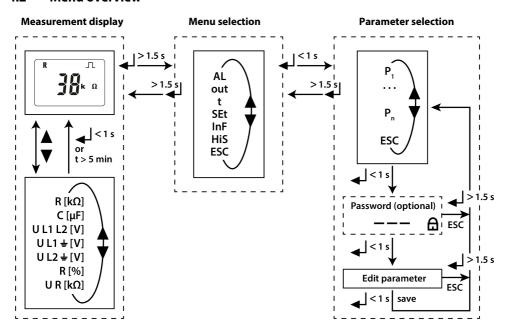
Use a suitable resistor to check the ISOMETER® against earth in the system being monitored.

4 Operation

4.1 Operating and display elements

Device front	Operating elements	Function
	ON	Power LED
ON ALT ALZ	AL1 AL2	Alarm LEDs (For codes see "Assigning the alarm messages to the relays", page 23.)
	AV	Up and down buttons - For navigating up or down in the menu settings. - For increasing or decreasing values.
	Т	Test button (press > 1.5 s)
	R	Reset button (press > 1.5 s)
T R MENU	4	Enter button - Select menu item. - Save value.
	MENU	MENU button (press > 1.5 s) - Starts menu mode. - Exits menu item without saving changes.

Display	Display elements	Function
	U	System voltage $U_{\rm n}$
	R	Insulation resistance R _F
	С	System leakage capacitance C _e
	L1 L2 ↓	Monitored conductors
	=-	Voltage type DC
	7.	Pulse symbol: error-free measured value update
	\sim	Voltage type AC
UIRZC L1 L2 ÷ = □\\\ C auto ynFHz kM\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	°C μ n F Hz k M Ω % m V A s	Measured values and units
test on off M Adr	a	Password protection is activated
	上	In the menu mode, the operating mode of the respective alarm relay is displayed.
	Adr	Communication interface with measured value: isoData operation
	M	Fault memory is activated
	test on off	Condition symbols
	> + <	Identification for response values and response value violation



The readability below −25 °C is limited.

Depending on the ISOMETER®'s scope of functions, not all display elements are used.

4.2 Menu overview

Menu item	Parameter						
AL	Querying and setting response values						
out	Configuring fault memory, alarm relays and interface						
t	Setting delay times and self test cycles						
SEt	Setting device control parameters						
InF	Querying software version						
HiS	Querying and clearing the history memory						
ESC	Going to the next-higher menu level						

4.3 Displaying measured values

Overview

HiS	Display	Description
✓	± R kΩ 	Insulation resistance $R_{\rm F}$ 1 k Ω 4 M Ω
✓	СµҒ√С	System leakage capacitance $C_{\rm e}$ 0 μF 105 μF
✓	~ ± U L1 L2 V	System voltage $U_{\rm n}$ (L1 - L2) $0~{\rm V_{RMS}}\dots500~{\rm V_{RMS}}$
✓	± U L1 🖶 = V	Residual voltage U_{L1e} (L1/+ - PE) DC 0500 V
1	± U L2 _ = V	Residual voltage <i>U</i> _{L2e} (L2/ PE) DC 0500 V
✓	± R %	Fault location in % -100 % +100 %
-	U R = kΩ 	Insulation resistance R_{UGe} 1 k Ω 4 M Ω Approximate value for asymmetrical insulation faults that can be used as a trend indicator with short measuring times.

[√] The measured value is displayed in the history memory.

Displaying the current measured values

The standard display shows the currently measured value for R_F . Press the up or down buttons to display the other measured values. After 5 min at the latest the display switches back to the standard display.

ADVICE

The pulse symbol indicates a currently measured value. If this symbol does not appear, the measurement is still ongoing and the latest valid measured value will be displayed. The symbols "<" or ">" will be displayed additionally to the measured value when a response value has been reached or violated, or the measured value is below or above the measuring range.

4.4 Setting the response values (AL)

4.4.1 Setting the response values for monitoring the insulation resistance

How to proceed

- 1. Open menu "AL".
- 2. Select parameter "R1" for prewarning or parameter "R2" for alarm.
- 3. Set value and confirm with Enter.

4.4.2 Setting the response values for undervoltage and overvoltage

How to proceed

- 1. Open menu "AL".
- 2. Select parameter "U<" for undervoltage or parameter "U>" for overvoltage.
- 3. Set value and confirm with Enter.

4.4.3 Response values overview

Display	Activ	ation	Setting value			Description
	FAC	Cs	Range	Range FAC		
R1 <	on	not adjustable	R2 990	69	kΩ	Prewarning value R_{an1} Hys. = 25 % / min. 1 kΩ
R2 <	on	not adjustable	1 R1	23	kΩ	Alarm value R_{an2} Hys. = 25 % / min. 1 kΩ
U <	off		10 U>	30	٧	Alarm value undervoltage RMS Hys. = 5 % / min. 5 V
U>	off		U< 500	500	V	Alarm value overvoltage RMS Hys. = 5 % / min. 5 V

FAC Factory settings Cs Customer settings

4.5 Configuring fault memory, alarm relays, and interfaces (out)

Call up menu "out" to configure fault memory, alarm relays, and interfaces.

4.5.1 Configuring the relays

	Relay K1			Description		
Display	FAC	Cs	Display	FAC	Cs	
<u></u> → <u>L</u> 1	n/c		_ / _2	n/c		Relay operating mode n/c or n/o

FAC Factory settings

Cs Customer settings

4.5.2 Assigning the alarm messages to the relays

The "on" setting assigns an alarm message to the respective relay. The LED indication is directly assigned to the alarm message and is not related to the relays.

In the event of an unsymmetrical insulation fault, only the alarm message corresponding to the assigned conductor (L1/+ or L2/-) will be displayed.

K1 "r1"			K2	K2 "r2"			LEDs		Description
Display	FAC	Cs	Display	FAC	Cs	ON	AL1	AL2	
1 Err	off		2 Err	on		0	0	0	Device error E.xx
r1 +R1 < Ω	on		r2 +R1 < Ω	off				0	Prewarning R1 Fault R _F at L1/+
r1 -R1 < Ω	on		r2 -R1 < Ω	off				0	Prewarning R1 Fault R _F at L2/–
r1 +R2 < Ω	off		r2 +R2 < Ω	on		•	0	•	Alarm R2 Fault R _F at L1/+
r1 -R2 < Ω	off		r2 -R2 < Ω	on		•	0	•	Alarm R2 Fault R _F at L2/–
r1 U < V	off		r2 U < V	on		•	0	0	Alarm <i>U</i> _n Undervoltage
r1 U > V	off		r2 U > V	on			0	0	Alarm U _n Overvoltage
r1 test	off		r2 test	off					Manually started device test

K1 "r1"			K2	"r2"		LEDs			Description
Display	FAC	Cs	Display	FAC	Cs	ON	AL1	AL2	
r1 S.AL	on		r2 S.AL	on					Device start with alarm

FAC Factory settings

Cs Customer settings

O LED off

© LED flashes

LED on

4.5.3 Activating or deactivating fault memory

Display	FAC	Cs	Description
М	off		Memory function for alarm messages (fault memory)

FAC Factory settings

Cs Customer settings

4.5.4 Configuring interface

Display	Setting value			Description		
	Range	FAC	Cs			
Adr	0/390	3	()	Bus Adr.	Adr = 0 deactivates BMS as well as Modbus and activates isoData with continuous data output (115k2, 8E1)	

FAC Factory settings

Cs Customer settings

() Customer setting that is not modified by FAC.

4.6 Setting delay times and self test cycles (t)

Open menu "t" to configure the times.

Display	Setting value			Description
	Range FAC Cs		Cs	
t	010	0 s		Start-up delay when starting the device
ton	099	0 s		Response delay K1 and K2
toff	099	0 s		Delay on release K1 and K2
test	OFF/1/24	24	h	Repetition time for device test

FAC Factory settings

Cs Customer settings

4.7 Setting device control parameters (SEt)

Open menu "SEt" to configure the device control.

Display	Activation		Setting value		e	Description
	FAC	Cs	Range FAC Cs		Cs	
•	off		0999	0		Password for parameter setting
nEt	on					System connection test
S.Ct	on					Device test at device start
FAC						Restore factory settings
SYS						For Bender Service only

FAC Factory settings

Cs Customer settings

4.8 Reset to factory settings

All settings with the exception of the interface parameters are reset to the factory settings.

- 1. Press MENU button (> 1.5 s).
- 2. Go to "SEt" and confirm with Enter.
- 3. Go to "FAC" and confirm with Enter.

4.9 Showing and deleting the history memory

ADVICE

The history memory saves the measured values for the first fault only. To this end, the history memory must be empty.

Show history memory

Call up "HiS" menu and go up or down.

Delete history memory

Call up "HiS" menu, go to "Clr" and confirm.

4.10 Querying software version (InF)

The software version is displayed as a ticker. Afterwards it can be output step by step using the up or down buttons.

How to proceed

- 1. Press MENU button (> 1.5 s).
- 2. Go to "InF" and confirm with Enter.
- 3. If necessary, use up or down buttons to display it step by step.

5 Data access via RS-485 interface

5.1 Data access using the BMS protocol

The BMS protocol is an essential component of the Bender measuring device interface (BMS bus protocol). Data transmission generally makes use of ASCII characters.

BMS channel no.	Operation value	Alarm
1	R _F	Prewarning R1
2	R _F	Alarm R2
3	C _e	
4	U _n	Undervoltage
5	U _n	Overvoltage
6		Connection fault, earth (E.01)
7		Connection fault, system (E.02)
8		All other device faults (E.xx)
9	Fault location [%]	
10	U _{L1e}	
11	U_{L2e}	
12	Update counter	
13	R _{UGe}	
14		
15		

5.2 IsoData data string

In IsoData mode the ISOMETER® sends the entire data string roughly once per second. Communication with the ISOMETER® in this mode is not possible and no additional sender may be connected via the RS-485 bus cable.

IsoData is activated in the menu "out", menu item "Adr", when Adr is set to 0. In this case, the "Adr" symbol flashes on the measured value display.

String	Description
!;	Start symbol
v;	Insulation fault location " " / "+" / "-"
1234, 5;	Insulation resistance $R_{\rm F}$ [k Ω]
1234;	System leakage capacitance C _e [μF]
1234, 5;	Reserved
+1234;	System voltage $U_n[V_{RMS}]$ System voltage type: AC or unknown: "" DC: "+" / "-"
+1234;	Residual DC voltage U _{L1e} [V]
+1234;	Residual DC voltage U _{L2e} [V]
+123;	Insulation fault location –100 +100 [%]
1234, 5;	Approximate unsymmetrical insulation resistance R_{UGe} [k Ω]
1234;	Alarm message [hexadecimal] (without leading "0x") The alarms are included in this value with the OR function. Assignment of the alarms: 0x0002 device error 0x0004 Prewarning insulation resistance $R_{\rm F}$ at L1/+ 0x0008 Prewarning insulation resistance $R_{\rm F}$ at L2/- 0x000C Prewarning insulation resistance $R_{\rm F}$ symmetrical 0x0010 Alarm insulation resistance $R_{\rm F}$ at L1/+ 0x0020 Alarm insulation resistance $R_{\rm F}$ at L2/- 0x0030 Alarm insulation resistance $R_{\rm F}$ symmetrical 0x0040 Reserved 0x0080 Reserved 0x0100 Alarm message undervoltage $U_{\rm n}$ 0x0200 Alarm message overvoltage $U_{\rm n}$ 0x0400 Manually started self test 0x0800 Device start with alarm
1;	Update counter, consecutively counts from 0 to 9. It increases with the update of the insulation resistance value.
<cr><lf></lf></cr>	String end

6 Technical data

6.1 Technical data isoES425

()* = factory setting

Insulation coordination acc. to IEC 60664-1/-3

efi		

Measuring circuit (IC1)	L1/+, L2/-
Supply circuit (IC2)	A1, A2
Output circuit (IC3)	11, 14, 24
Control circuit (IC4)	E, KE, T/R, A, B
Rated voltage	400 V
Overvoltage category	III

Rated impulse voltage

IC1/(IC2-4)	6 kV
IC2/(IC3-4)	4 kV
IC3/(IC4)	4 kV

Rated insulation voltage

IC1/(IC2-4)	400 V
IC2/(IC3-4)	250 V
IC3/(IC4)	250 V
Pollution degree	3

Protective separation (reinforced insulation) between

IC1/(IC2-4)	Overvoltage category III, 600 V
IC2/(IC3-4)	Overvoltage category III, 300 V
 IC3/(IC4)	Overvoltage category III, 300 V

Voltage test (routine test) according to IEC 61010-1

IC	(2/(IC3-4)	AC 2.2 kV
IC	3/(IC4)	AC 2.2 kV

Supply voltage

Supply voltage $U_{\rm s}$	AC 100240 V DC 24240 V		
Tolerance of U _s	-30+15 %		
Frequency range of $U_{\rm s}$	4763 Hz		
Power consumption	≤ 3 W, ≤ 9 VA		
Monitored IT system			
Nominal system voltage $U_{\rm n}$	3(N)AC, AC/DC 0400 V		
Tolerance of <i>U</i> _n	+25 %		
Frequency range of $U_{\rm n}$ DC, 1			
Measuring circuit			
Measuring voltage $U_{\rm m}$	±12 V		
Measuring current $I_{\rm m}$ at $R_{\rm F}=0~\Omega$	≤ 110 µA		
Internal resistance R _i	≥ 115 kΩ		
Permissible system leakage capacitance C_e			
Permissible extraneous DC voltage U_{fg}			
Response values			
Response value R _{an1}	2…990 kΩ (69 kΩ)*		
Response value R _{an2}	1980 kΩ (23 kΩ)*		
Relative uncertainty R _{an}	± 15 %, at least ± 1 k Ω		
Hysteresis R _{an}	25 %, at least 1 kΩ		
Undervoltage detection 10.			
Overvoltage detection 1150			
lative uncertainty U ± 5 %, at leas			
Relative uncertainty depending on the frequency ≥ 400 Hz	-0,015 %/Hz		
Hysteresis <i>U</i>	5 %, at least 5 V		

0...500 V_{RMS}

±5 %, at least ±5 V

Time response

Display range measured value system voltage (U_n)

Response time $t_{\rm an}$ of $R_{\rm F} = 0.5 \times R_{\rm an}$ and $C_{\rm e} = 1~\mu F$ acc. to IEC 61557	-8 ≤ 10 s	
Start-up delay t	010 s (0 s)*	
Response delay t_{on}	099 s (0 s)*	
Delay on release $t_{\rm off}$	099 s (0 s)*	
Displays, memory		
Display	LC display, multi-functional, not illuminated	
Display range measured value insulation resistance (R_F)	1 kΩ 4 MΩ	
Operating uncertainty R _F	± 15 %, at least ± 1 k Ω	

Display range measured value system leakage capacitance of $$\Omega...105~\mu F$$ $R_{\rm E} > 10~{\rm k}\Omega$

Operating uncertainty ± 15 %, at least ± 2 μF Password off / 0...999 (off, 0)*

Fault memory alarm messages on / (off)*

Interface

Operating uncertainty

Interface; protocol	RS-485; BMS, isoData
Baud rate	BMS (9.6 kBit/s), isoData (115.2 kBit/s)
Cable length (9.6 kBit/s)	≤ 1200 m
Cable: twisted pairs, shield connected to PE on one side	min. J-Y(St)Y 2×0.6
Terminating resistor 120 Ω (0.25 W), internal, can be con-	
Device address, BMS bus	390 (3)*

Switching elements			
Switching elements	2×1 n/o contacts, common terminal 11		
perating principle n/c, n/o			
Electrical endurance 10,0			
Contact data acc. to IEC 60947-5-1			
Utilisation category	AC-12 / AC-14 / DC-12 / DC-12 / DC-12		
Rated operational voltage	230 V / 230 V / 24 V / 110 V / 220 V		
Rated operational current	5 A / 2 A / 1 A / 0.2 A / 0.1 A		
Necessary minimum contact load (relay manufacturer's reference)	10 mA / DC 5 V		
Environment/EMC			
EMC	IEC 61326-2-4		
Ambient temperatures			
Operation -2.			
Transport –40			
rage –25+			
Climatic class acc. to IEC 60721			
Stationary use (IEC 60721-3-3)	3K24		
Fransport (IEC 60721-3-2)			
ng-time storage (IEC 60721-3-1)			
Classification of mechanical conditions acc. to IEC 60721			
Stationary use (IEC 60721-3-3)	3M12		
Transport (IEC 60721-3-2)	2M4		
Long-time storage (IEC 60721-3-1)	1M12		
Other			
Operating mode	continuous operation		
Mounting	ng cooling slots must be ventilated vertically		
Degree of protection, built-in components (DIN EN 60529)	IP30		
Degree of protection, terminals (DIN EN 60529)	IP20		
Enclosure material polyca			

DIN rail mounting acc. to	IEC 60715	
Screw mounting 2 × M4 with		
Weight	≤ 150 g	

6.2 Connection

Push-wire terminals

Nominal current	≤ 10 A
Conductor sizes	AWG 2414
Stripping length	10 mm
Rigid	0.22.5 mm ²
Flexible without ferrules	0.752.5 mm ²
Flexible with ferrules with/without plastic sleeve	0.252.5 mm ²
Multi-conductor flexible with TWIN ferrules with plastic sleeve	0.51.5 mm ²
Opening force	50 N
Test opening	Ø 2.1 mm

6.3 Standards and certifications

The ISOMETER® was developed in compliance with the following standards:

- DIN EN 61557-8 (VDE 0413-8): 2015-12/Cor1: 2016-12
- IEC 61557-8: 2014/COR1: 2016

EU Declaration of Conformity

Hereby, Bender GmbH & Co. KG declares that the device covered by the Radio Directive complies with Directive 2014/53/EU. The full text of the EU Declaration of Conformity is available at the following Internet address:

https://www.bender.de/fileadmin/content/Products/CE/CEKO_isoXX425.pdf

UKCA Declaration of Conformity

Hereby, Bender GmbH & Co. KG declares that this device is in compliance with Radio Equipment Regulations 2017 (S.I. 2017/1206). The full text of the UK declaration of conformity is available at the following internet address:

https://www.bender.de/fileadmin/content/Products/UKCA/UKCA_isoXX425.pdf

6.4 Ordering data

ISOMETER®

Model	Nominal system voltage U _n	Article number	
		Push-wire terminals	Screw-type terminals
isoES425-D4-4	3(N)AC, AC/DC 0400 V	B71037020	

Accessories

Description	Article number
Mounting clip for screw mounting	B98060008
XM420 mounting frame	B990994

6.5 Change log

Date	Document version	Valid from software version	State/Changes
08.2017	00	D0471 V1.xx	First edition
10.2023	01	D0471 V1.xx	Editorial revision Transfer to SMC incl. new Cl and new chapter structure Better separation of descriptive and instructional texts (function/operation) Formula symbol: R _{UGe} instead of R _{UGF} Standards: Link to website added. Technical data: classification of climatic and mechanical conditions revised. Conformity markings: ISO 9001 removed, UKCA added
11.2023	02	D0471 V1.xx	Note on Modbus removed.

Londorfer Straße 65 35305 Grünberg Germany

Tel.: +49 6401 807-0 info@bender.de www.bender.de

Alle Rechte vorbehalten. Nachdruck und Vervielfältigung nur mit Genehmigung des Herausgebers.

All rights reserved. Reprinting and duplicating only with permission of the publisher. © Bender GmbH & Co. KG, Germany Subject to change! The specified standards take into account the edition valid until 11.2023 unless otherwise indicated.

